New solid-state battery chemistry with glass electrolyte delivers 3 times the capacity

Electronics cj Times

Normally it’s a pretty solid assumption that whatever “revolutionary new battery chemistry” has just hit the news is going to crash and burn — sometimes literally. Maybe the thing uses some outlandishly expensive metal as a catalyst, or it has to be supercooled to be well-behaved, or you have to fastidiously mind the outgassing lest the thing explode. Now there’s a new battery chemistry in town, and it comes from the mind of John B. Goodenough (pictured below): the same guy who came up with the cobalt-oxide cathode that powers the lithium-ion battery chemistry we know and love. Goodenough predicts that the new chemistry will have triple the energy density of lithium-ion cells.

Goodenough Battery

Lithium-ion batteries have been in the news lately because things Samsung puts them in tend to explode. They even had some washing machines that apparently blew up out of sympathetic embarrassment. So it’s probably wise to reserve judgment until something can be manufactured at scale. Other battery chemistries have come before, and failed. Lithium-air batteries are a great example of a very interesting battery chemistry that we can’t use, because its development has been hamstrung by engineering problems we can’t yet solve.

This new chemistry has one important difference from the lithium-ion model: It uses sodium instead of lithium. Sodium and lithium are both alkali metals, with the same +1 charge. But sodium is a whole lot more abundant than lithium, which could make the new battery chemistry less expensive than lithium-ion cells.

lIKE ()orShare